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Figure 1: Base mesh reconstruction for a multi-view video sequence overlaid on the video frames. Our method captures the
facial performance well. The result meshes are temporally stable and accurately align with the input images. Visualizing with
a shared checkerboard texture indicates good tracking quality. Please see the supplemental video for better visualization.
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Supplemental Video. Due to upload size limit, we can-
not provide the supplemental video in the official supple-
mental materials. Please see the video on the project page:
https://tianyeli.github.io/tofu.

Additional Quantitative Results. Tab. 1 provides ad-
ditional quantitative comparisons to other learning based
methods, namely 3DMM regression and DFNRMVS [1].
Fig. 2 shows the cumulative error curves for scan-to-mesh
distances among the methods. All methods are evaluated
on a common held-out test set with 499 ground truth 3D
scans; no data of test subjects are used during training. The
geometric reconstruction accuracy is evaluated using scan-
to-mesh distance (s2m) that measures the distance between
each vertex of a ground truth scan, and the closest point
in the surface of the reconstructed mesh. The correspon-
dence accuracy is evaluated using a vertex-to-vertex dis-
tance (v2v) that measures the distance between each ver-
tex of a registered ground truth mesh, and the semantically
corresponding point in the reconstructed mesh.

Methods median s2m | median v2v
3DMM Regr. 2.104 3.662
3DMM Regr. (PP) 1.659 2.890
DFNRMVS [1] (PP) 1.885 4.565
Our Method 0.585 1.973

Table 1: Comparison on geometry accuracy (median s2m),
correspondence accuracy (median v2v) among the learn-
ing based methods, measured in millimeters. “PP” denotes
the result after a post-processing Procrustes alignment that
solves for the optimal rigid pose (i.e. 3D rotation and trans-
lation) and scale to best align the reconstructed mesh with
the ground truth. Note that our method requires no post-
processing.

Our method outperforms (w/o post-processing) the ex-
isting methods (w/ and w/o post-processing) in terms of ge-
ometric reconstruction quality and the quality of the corre-
spondence. Note that while the distance of DFNRMVS [1]
is higher than for the 3DMM regression, DENRMVS [1] is
visually better in most regions. Their reconstructed meshes
tend to have large errors in the forehead and in the jaw ar-
eas, as shown in Fig. 5, due to a different mask definition for
their on-the-fly deep photo-metric refinement. Fig. 5 in the
paper shows that our methods produces significantly better
reconstructions than DFNRMVS [1] across the entire face.
Additional Qualitative Results. We evaluate our trained
model on a multi-view video sequence with 8 calibrated
and synchronized views, captured at 30 fps. We apply our
progressive mesh generation network in a frame-by-frame
manner, without applying any temporal smoothing. Fig. 1
shows that our base mesh well captures the extreme expres-
sions, and it aligns well with the input images. Despite
being trained on static images only, the resulting recon-
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Figure 2: Quantitative evaluation by cumulative error
curves for scan-to-mesh distances among learning based
methods.
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Figure 3: Quantitative evaluation by cumulative error
curves for scan-to-mesh distances among local refinement
stages.

struction is temporally stable, as shown in the supplemental
video. Fig. 9 shows additional base mesh reconstructions
for different static multi-view images of varying subjects
in different expressions. Our method reconstructs the face
shape and expression well, closely to the ground truth scans.
We show more visualizations in the supplemental video.

Impact of Local Refinements. Fig. 3 shows the cumula-
tive error curves for scan-to-mesh distances among the local
stages. Given the coarse mesh M as output of the global
stage, each local stage successively increases the mesh res-
olution and refines the vertex locations. Fig. 6 demonstrates
the effect of each local refinement step. As shown in Fig. 6,
the quality of the reconstructed mesh improves after each
local stage, while the scan-to-mesh distance to the scan re-
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Figure 4: Quantitative evaluation by cumulative error
curves for scan-to-mesh distances among various numbers
of views.
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Figure 5: Example results from DFNRMVS [1].
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Figure 6: Inferred meshes for global stage M and after
upsampling and refinement for each local stage M; (1 <
1 < 3).

duces. Note that details such as nose corners and lips grad-
ually improve through the local stages.

More Ablation on Number of Views. Fig. 4 shows the
cumulative error curves for scan-to-mesh distances for net-
works with different number of input views.

More Results on Appearance and Detail Capture.
Fig. 10 shows additional results of the appearance enhance-
ment network, which predicts normal displacements and ad-
ditional albedo and specular maps on top of the predicted
base mesh M (see Fig. 2 of the paper). Our reconstruc-
tion pipeline (i.e. base mesh reconstruction and appearance
and detail capture) enables us to reconstruct a 3D face with
high-quality assets, 2 to 3 orders of magnitude faster than
existing methods, which can readily be used for photoreal-

Figure 7: Visualization of cross-subject dense correspon-
dence of the base meshes inferred by ToFu in a shared

checkerboard texture.
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Figure 8: Our system can also infer clothed human body
surfaces in consistent topology.

istic rendering.

Results on Clothed Human Body Datasets. While we
focus on face mesh in correspondence, we find that our
method can also predict clothed full body meshes in cor-
respondence. We test our method on a dataset of human
bodies as shown in Fig. 8. Human bodies are challenging
due to large pose variations and occlusions. Given the chal-
lenging inputs, our methods still outputs detailed geometry
which closely fit the ground truth surfaces with small scan-
to-mesh distances, shown in Fig. 8. Checkerboard projec-
tion also shows the accuracy of semantic correspondence
among extreme poses. The results demonstrate the flexibil-
ity of our method for highly articulated and diverse surfaces.
Albedo. While the input images in our datasets are diffuse
albedo images, obtained with polarized lighting and cam-
eras [3, 5], the results, shown in the paper, indicate that our



system can be adapted to non-lightstage setups, e.g. cap-
ture system of CoMA [6]. The appearance capture net-
work learns the mapping between albedo images and the
details of specular reflectance and fine geometry, as “image-
to-image translation”. This synthesis is reasonable since the
input images contain pore-level details and the outputs are
pixel-aligned. However, imperfect albedo images can po-
tentially contain more information on specularity, which in
principle can guide the systhesis network to better recover
details. This is an interesting perspective and we will ex-
plore it as future work.

The E operator. Let B be batch size and N be ver-
tex number. Given a feature volume L, from the global
volumetric feature sampling, the global geometry network
(3D ConvNet) predicts a probability volume C, of size
(B, N, 32,32,32), whose N-channel is ordered in a pre-
defined vertex order. Finally the soft arg-max operator E
computes the expectations on C, per channel, and outputs
vertices of shape (B, IV, 3) corresponding to the predefined
order.

On Dense Correspondence. Dense correspondence across
identities and expressions is a challenging task [2, 4].
Cross-identity dense correspondence is fundamentally dif-
ficult to define beyond significant landmarks, especially in
texture-less regions. The state-of-the-art methods rely on
landmarks and propagate the dense correspondence by sta-
tistical (3DMM) or physical constraints (Laplacian regular-
ization) in a carefully designed optimization process with
manual adjustments. Cross-expression correspondence,
however definable, can be enforced by photometric consis-
tency (optical flow or differentiable rendering). Our ground
truth datasets utilized all these state-of-the-art strategies and
therefore can be regarded as one of the best curated datasets.
With the “best” ground truth one can get as now, we trained
our network in a supervised manner to the ground truth
meshes (same topology) with equal vertex weights. Mea-
suring the distances to the ground truth (v2v and land-
mark errors) gives informative and reliable cross-expression
evaluations on dense correspondence quality. Furthermore,
photometric error visualizations on a shared UV map (as in
the main paper) and the stable rendering of reconstructed
sequence as in Fig. 1 both qualitatively shows high quality
of cross-expression correspondence.

However, quantitative evaluating cross-identity dense
correspondence is by nature difficult. These two metrics
above indirectly measure for cross-subject correspondence.
Here we show additional visualizations by rendering in-
ferred meshes in a shared checkerboard texture and high-
lighting some facial landmarks in Fig. 7. The meshes in-
ferred by ToFu preserve dense semantic correspondences
across subjects and expressions, as shown by the landmarks
and the uniquely textured regions.

Implementation Details. The appearance enhancement

synthesis network uses as similar architecture and losses as
proposed by Wang et al. [7]. We train the global generator
and 2 multi-scale discriminators at resolution of 512 x 512.
The main difference is that we extract features from two in-
puts separately before concatenating them and feeding into
the convolutional back-end so that we can better encode
useful features correspondingly. The network is trained us-
ing an Adam optimizer with learning rate of 2e —4 (decayed
from 100 epoch) and batch size of 32 on a NVIDIA GeForce
GTX 1080 GPU. For further enhancement, we trained a sep-
arate super-resolution network, upsampling attribute maps
from 512 to 4K resolution. We modify the network design
from ESRGAN [8] by expanding the number of Residual
in Residual Dense Blocks (RRDB) from 23 to 32, enabling
the upsampling capacity from 4x to 8% in a single pass.
The super-resolution network is trained with learning rate
of 1e — 4 (halved at 50K, 100K, 200K iterations) and batch
size of 16 on two NVIDIA GeForce GTX 1080 GPUs.
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Figure 9: More results of reconstructed meshes in dense correspondence. The scan-to-mesh distance is visualized color
coded on the reference scan, where red denotes an error above 5 millimeters.
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Figure 10: Our method can generate reliable base alignment meshes, on top of which a comprehensive face modeling pipeline
can be built. Here we show more rendering with inferred normal displacements and additional albedo and specular maps.




