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(a) Input images (9 of 15 views) (b) Mesh in correspondence

(c) Skin details and appearances

(d) Animation with fully rigged face model

Figure 1: Given (a) multi-view images, our face modeling framework ToFu uses volumetric sampling to predict (b) accurate
base meshes in consistent topology as well as (c) high-resolution details and appearances. Our efficient pipeline enables (d)

rapid creation of production-quality avatars for animation.

Abstract

High-fidelity face digitization solutions often combine
multi-view stereo (MVS) techniques for 3D reconstruction
and a non-rigid registration step to establish dense corre-
spondence across identities and expressions. A common
problem is the need for manual clean-up after the MVS step,
as 3D scans are typically affected by noise and outliers
and contain hairy surface regions that need to be cleaned
up by artists. Furthermore, mesh registration tends to fail
for extreme facial expressions. Most learning-based meth-
ods use an underlying 3D morphable model (3DMM) to
ensure robustness, but this limits the output accuracy for
extreme facial expressions. In addition, the global bot-
tleneck of regression architectures cannot produce meshes
that tightly fit the ground truth surfaces. We propose ToFu,
Topological consistent Face from multi-view, a geometry
inference framework that can produce topologically con-
sistent meshes across facial identities and expressions us-
ing a volumetric representation instead of an explicit un-
derlying 3DMM. Our novel progressive mesh generation
network embeds the topological structure of the face in a
feature volume, sampled from geometry-aware local fea-
tures. A coarse-to-fine architecture facilitates dense and
accurate facial mesh predictions in a consistent mesh topol-
0gy. ToFu further captures displacement maps for pore-

level geometric details and facilitates high-quality render-
ing in the form of albedo and specular reflectance maps.
These high-quality assets are readily usable by production
studios for avatar creation, animation and physically-based
skin rendering. We demonstrate state-of-the-art geometric
and correspondence accuracy , while only taking 0.385 sec-
onds to compute a mesh with 10K vertices, which is three
orders of magnitude faster than traditional techniques. The
code and the model are available for research purposes at
https://tianyeli.github.io/tofu.

1. Introduction

Creating high-fidelity digital humans is not only highly
sought after in the film and gaming industry, but is also gain-
ing interest in consumer applications, ranging from telep-
resence in AR/VR to virtual fashion models and virtual as-
sistants. While fully automated single-view avatar digitiza-
tion solutions exist [28, 29,42, 56, 63], professional studios
still opt for high resolution multi-view images as input, to
ensure the highest possible fidelity and surface coverage in
a controlled setting [8, 23, 25, 40, 41, 46, 50] instead of un-
constrained input data. Typically, high-resolution geometric
details (< 1mm error) are desired along with high resolu-
tion physically-based material properties (at least 4K). Fur-
thermore, to build a fully rigged face model for animation, a



large number of facial scans and alignments (often over 30)
are performed, typically following some conventions based
on the Facial Action Coding System (FACS).

A typical approach used in production consists of using
a multi-view stereo acquisition process to capture detailed
3D scans of each facial expression, and a non-rigid regis-
tration [8, 36] or inference method [37] is used to warp a
3D face model to each scan in order to ensure consistent
mesh topology. Between these two steps, manual clean-up
is often necessary to remove artifacts and unwanted surface
regions, especially those with facial hair (beards, eyebrows)
as well as teeth and neck regions. The registration process
is often assisted with manual labeling tasks for correspon-
dences and parameter tweaking to ensure accurate fitting. In
a production setting, a completed rig of a person can easily
take up to a week to finalize.

Several recent techniques have been introduced to au-
tomate this process by fitting a 3D model directly to a cali-
brated set of input images. The multi-view stereo face mod-
eling method of [21] is not only particularly slow, but relies
on dynamic sequences and carefully tuned parameters for
each subject to ensure consistent parameterization between
expressions. In particular facial expressions that are not
captured continuously cannot ensure accurate topological
consistencies. More recent deep learning approaches [4, 63]
use a 3D morphable model (3DMM) inference to obtain a
coarse initial facial expression, but require a refinement step
based on optimization to improve fitting accuracy. Those
methods are limited in fitting extreme expressions due to
the constraints of linear 3DMMs and fitting tightly to the
ground-truth face surfaces due to the global nature of their
regression architectures. The additional photometric refine-
ment also tends to fit unwanted regions like facial hair.

We introduce a new volumetric approach for consistent
3D face mesh inference using multi-view images. Instead
of relying explicitly on a mesh-based face model such as
3DMM, our volumetric approach is more general, allowing
it to capture a wider range of expressions and subtle defor-
mation details on the face. Our method is also three orders
of magnitude faster than conventional methods, taking only
0.385 seconds to generate a dense 3D mesh (10K vertices)
as well as produce additional assets for high-fidelity produc-
tion use cases, such as albedo, specular, and high-resolution
displacement maps.

To this end, we propose a progressive mesh generation
network that can infer a topologically consistent mesh di-
rectly. Our volumetric architecture predicts vertex locations
as probability distributions, along with volumetric features
that are extracted using the underlying multi-view geome-
try. The topological structure of the face is embedded into
this architecture using a hierarchical mesh representation
and coarse-to-fine network.

Our experiments show that ToFu is capable of produc-

ing highly accurate geometry consistent with topology au-
tomatically, while existing methods either rely on manual
clean-up and parameter tuning, or are less accurate espe-
cially for subjects with facial hair. Since we can ensure a
consistent parameterization across facial identities and ex-
pressions without any human input, our solution is suitable
for scaled digitization of high-fidelity facial avatars, We
not only reduce the turn around time for production, but
is also provide a critical solution for generating large facial
datasets, which is often associated with excessive manual
labor. Our main contributions are:

* A novel volumetric feature sampling and refinement
model for topologically consistent 3D mesh recon-
struction from multi-view images.

* An appearance capture network to infer high-
resolution skin details and appearance maps, which,
combined with the base mesh, forms a complete pack-
age suitable for production in animation and photore-
alisitic rendering.

* We demonstrate state-of-the-art performance for com-
bined geometry and correspondence accuracy, while
achieving mesh inference at near interactive rates.

* Code and model are publicly available.

2. Related Work

Face Capture. Traditionally, face acquisition is separated
into two steps, 3D face reconstruction and registration [17].
Facial geometry can be captured with laser scanners [35],
passive Multi-View Stereo (MVS) capture systems [7], ded-
icated active photometric stereo systems [23, 41], or depth
sensors based on structured light or time-of-flight sen-
sors. Among these, MVS is the most commonly used
[18, 20,24, 34,43, 60]. Although these approaches produce
high-quality geometry, they suffer from heavy computation
due to the pairwise features matching across views, and they
tend to fail in case of sparse view inputs due to the lack of
overlapping neighboring views. More recently, deep neural
networks learn multi-view feature matching for 3D geome-
try reconstruction [26, 31, 33, 51, 64]. Compared to classi-
cal MVS methods, these learning based methods represent
a trade-off between accuracy and efficacy. All these MVS
methods output unstructured meshes, while our method pro-
duces meshes in dense vertex correspondence.

Most registration methods use a template mesh and fit
it to the scan surface by minimizing the distance between
the scan’s surface and the template. For optimization, the
template mesh is commonly parameterized with a statistical
shape space [3, 9, | 1, 38] or a general blendshape basis [48].
Other approaches directly optimize the vertices of the tem-
plate mesh using a non-rigid Iterative Closest Point (ICP)
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Figure 2: Overview of our end-to-end face modeling system. Given images captured from multi-views, the progressive
mesh generation network predicts an accurate face mesh in consistent topology. Then the appearance and detail capture net-
work synthesizes high-resolution skin detail and attribute maps, which enables highly detailed geometry and photo-realistic

renderings.

[36], with a statistical model as regularizer [3°], or jointly
optimize correspondence across an entire dataset in a group-
wise fashion [12, 65]. For a more thorough review of face
acquisition and registration, see Egger et al. [17]. All these
registration methods solve for facial correspondence inde-
pendent from the data acquisition. Therefore, errors in the
raw scan data propagate into the registration.

Only few methods exist that are similar to our method
of directly outputting high-quality registered 3D faces from
calibrated multi-view input [8, 13, 14, 21]. While sharing a
similar goal, our method goes beyond these approaches in
several significant ways. Unlike our method, they require
calibrated multi-view image sequence input, contain multi-
ple optimization steps (e.g. for building a subject specific
template [21], or anchor frame meshes [8]), and are com-
putationally slow (e.g. 25 minutes per frame for the coarse
mesh reconstruction [21]). ToFu instead takes calibrated
multi-view images as input (i.e. static) and directly out-
puts a high-quality mesh in dense vertex correspondence in
0.385 seconds. Regardless, our method achieves stable re-
construction and registration results for sequence input.
Model-based reconstruction. A large body of work aims
at reconstructing 3D faces from unconstrained images or
monocular videos. To constrain the problem, most methods
estimate the coefficients of a statistical 3D morphable mod-
els (3DMM) in an optimization-based [, 6, 10, 11, 57] or
learning-based framework [15, 19, 22, 45, 49, 56, 58]. Due
to the use of over-simplified, mostly linear statistical mod-
els, the reconstructed meshes only capture the coarse geom-
etry shape while subtle details are missing. For better gener-
alization to unconstrained conditions, [53, 59] jointly learn
a 3D prior and reconstruct 3D faces from images. Although
monocular reconstruction methods can provide visually ap-
pealing 3D face reconstructions, their accuracy and qual-
ity is not suitable for applications which require metrically
accurate geometry. Recently published work indicates that
existing state-of-the-art monocular 3D face reconstructions
are metrically worse or only marginally better compared to
a static model mean face, when compared to ground truth

3D scans [49]. This comes at little surprise as inferring 3D
geometry from a single image is an ill-posed problem due to
the inherent ambiguity of focal length, scale and shape [5]
as under perspective projection different shapes result in
the same image for different object-camera distances. Our
method instead leverages explicit calibrated multi-view in-
formation to reconstruct metrically accurate 3D geometry.

3. Multi-View Face Inference

As shown in Fig. 2, given images {I;}X, in K views
with known camera calibration {P;}X ,, together denoted
asZ = {I;, P;} X |, the goal of ToFu is two-fold: (1) to re-
construct an accurate base mesh in an artist-designed topol-
ogy, and (2) to estimate pore-level geometric details and
high-quality facial appearance in form of albedo and spec-
ular reflectance maps. Formally, an output base mesh M
contains a list of vertices V. € R¥*3 and a fixed triangu-
lation T. The base meshes are required to (1) tightly fit
the face surfaces, (2) share a common artist-designed mesh
topology, where each vertex encodes the same semantic in-
terpretation across all meshes, and (3) have a sufficient tri-
angle or quad density (with N > 10* number of vertices).

The key to dense mesh prediction is a coarse-to-fine
network architecture, as shown in Fig. 3. The desired
semantic mesh correspondence is naturally embedded in
the hierarchical architecture. Based on that, the geome-
try is inferred by the following two stages: (1) a coarse
mesh prediction My, by the global stage Vo = F4(Z);
and (2) iteratively upsampling and refining into the denser
meshes { M1, Ms, ..., M}, by the local stage Vi1 =
Fi(Z, V). My, is the final prediction of base mesh M.

Conceptually, the global stage mimics a learning-based
MYVS, while the local stage provides “updates” as if in an
iterative mesh registration. In contrast to the two traditional
methods, our two steps share consistent correspondence in
a fixed topology and use volumetric features for geometry
inference and surface refinement.
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Figure 3: Overview of the progressive mesh generation network.

3.1. Global Geometry Stage

Volumetric Feature Sampling. In order to extract salient
features to predict surface points in correspondence, we de-
ploy a shared U-Net convolutional network to extract local
2D feature maps F; for each input image I;. We sample vol-
umetric features L by bilinearly sampling and fusing image
features at projected coordinates in all images for each local
point v € R in the 3D grid G:

L(v) = o({Fi(II(v,Py)) } i), (1

where TI(-) is the perspective projection function and o (-)
is a view-wise fusion function, for which common choices
can be max, mean or standard deviation. The 3D grid G is
a set of points on a regular 3D grid, which can be defined
at arbitrary locations with arbitrary shapes. Here we choose
cube grids, as shown in green cubes in Fig. 3 to feed into
3D convolution networks.

Global Geometry Network. To enable the vertex flexibil-
ity, we design the network to predict vertex location free of
the constraint of 3DMMs. To encourage better generaliza-
tion, we design a volumetric network architecture to learn
the probabilistic distribution instead of the absolute location
for each vertex. We define a canonical global grid G, that
covers the whole captured volume for subject heads. We
apply the volumetric feature sampling (Eq. 1) on the global
grid G, to obtain the global volumetric feature L, similar
to [30, 32]. We deploy the global geometry network &4, a
3D convolutional network with skip connections, to predict
a probability volume C, = ®,(L,), in which each chan-
nel encodes the probability distribution for the location of
a corresponding vertex in the initial mesh M. The vertex
locations are extracted by a per-channel soft-argmax opera-
tion, Vo = E(Cy), similar to that in [32].

3.2. Local Geometry Stage
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Figure 4: The iterative upsampling and refinement process
in the local geometry stage.

Based on the coarse mesh M obtained from the global
stage, the local stage progressively produces meshes in
higher resolution and with finer details, { M, }£_,. Ateach
level k, this process is done in two steps, as shown in Fig. 4:
(1) a fixed and differentiable upsampling operator to pro-
vide a reliable initialization for upsampled meshes, and (2)
a local refinement network to further improve the surface
details based on the input images.

Upsampling Operator. Ranjan et al. [44] propose a mesh
upsampling technique based on the barycentric embedding
of vertices in the lower-resolution mesh version. Directly
using this upsampling scheme results in unsmooth artifacts,
as the barycentric embedding contrains the upsampled ver-
tices to lie in the surface of the lower-resolution mesh. In-
stead, we use additional normal displacement weights as
shown in step 1 of Fig. 4. Given a sparser mesh M) =
(Vi, T}) and its per-vertex normal vectors N, we upsam-



ple the mesh by
Vi1 = QiVy + DNy, 2

where Qj, € RVe+1XNk jg the barycentric weight matrix as
in [44] and Dj_; € RNx+1%Nk is the additional coefficient
matrix that apply displacement vectors along normal direc-
tions. The normal displacements encode additional surface
details that allow vertices to be outside of the input surface.
For a hierarchy with L levels, we first downsam-
ple the full-resolution template mesh 7 = (V,T) :=
Tr by isotropic remeshing and non-rigid registration,
into a series of meshes with decreasing resolution while
still preserving geometry and topology of original mesh:
{Te-1,Tr—2,...,To}. Next, we embed the vertices at
higher resolution in the surface at lower resolution meshes
by barycentric coordinates Qj as in [44]. We then project
the remaining residual vectors onto the normal direction and
obtain Dy,.
Local Refinement Network. Around each vertex (indexed
with j) of the upsampled mesh \7,(3 ll, we define a smaller
grid than G, in the global stage in the local neighbor-

hood QZ(J ). We sample local volumetric features LZ(J ) by
Eq. 1. For each local feature volume, we apply the local
refinement network ®;, a 3D convolutional network with
skip connections, to predict per-vertex probability volume
Cl(] ) = @l(Ll(j )). Then we compute the corrective vector
by the expectation operator, §V,(j 421 = E(CZ(J )). This pro-
cess is applied to all vertices independently, and therefore
can be parallelized in batches. Finally the upsampled and
refined mesh vertices are

Vi1 = Vi1 + Vi 3)

Given My, we iteratively apply the local stage at all levels
until we reach the highest resolution and obtain M.

The volumetric feature sampling and the upsampling op-
erator, along with the networks are fully differentiable, en-
abling the progressive geometry network end-to-end train-
able from input images to dense registered meshes.

3.3. Appearance and Detail Capture

Skin detail and appearance maps are commonly used in
photo-realistic rendering, which is often difficult to estimate
without special capture hardware, such as the Light Stage
capture system [16]. We propose a simple yet effective
architecture to estimate high-resolution detail and appear-
ance maps, potentially without the dependency on special
appearance capture systems.

Albedo Maps Generation. The base meshes are recon-
structed for a smaller head region. We augment the base
meshes by additional fitting for the back of the head using
Laplacian deformation [52]. We then perform the standard
texturing given the completed mesh and multi-view images

and obtain the albedo reflectance map on the UV domain.
Furthermore, by applying the texturing process and sample
vertex locations instead of RGB colors, we obtain another
map on the UV domain, that we call the geometry map.
Detail Maps Synthesis. To further augment the represen-
tation, we adopt an image-to-image translation strategy to
infer finer-level details. Using a network similar to [61],
our synthesis network infers specular reflectances and dis-
placements given both albedo and geometry map. We then
upscale all the texture maps to 4K resolution by using the
super resolution strategy of [62]. We can obtain the detailed
mesh in high-resolution by applying the displacement maps
on the base mesh, as shown in Fig. 2. The reconstructed skin
detail and appearance maps are directly usable for standard
graphics pipelines for photo-realistic rendering.

4. Experiments

Datasets. We evaluate our method on datasets captured
from the Light Stage system [23, 41], with 3D scans from
MVS, ground truth base meshes from a traditional mesh
registration pipeline [38], and ground truth skin attributes
from the traditional light stage pipeline [16]. In partic-
ular, we correct the ground truth base meshes (registra-
tions) with optical flow and manual work of a professional
artist, to ensure high quality and high accuracy of regis-
tration. The dataset contains 64 subjects (45 for train and
19 for test), covering a wide diversities in gender, age and
ethnicity. Each set of capture contains a neutral face and
26 expressions, including some extreme face deformations
(e.g. mouth widely open), asymmetrical motions (jaw to
left/right) and subtle expressions (e.g. concave cheek or eye
motions).

Implementation Details. For the progressive mesh gen-
eration network, our feature extraction network adopts a
pre-trained UNet [47] with ResNet34 [27] as its backbone,
which predicts feature maps of half of resolution of in-
put image with 8 channels. The volumetric features of the
global stage are sampled from a 323 grid with grid size of
10 millimeters, the local stage uses a 83 grid with a grid size
of 2.5 millimeters. We randomly rotate the grids for the vol-
umetric feature sampling as data augmentation during train-
ing. The mesh hierarchy with L = 3 contains meshes with
341, 1194, 3412 and 10495 vertices. Both the global ge-
ometry network and local refinement network use a similar
architecture as the V2V network in [32]. Both stages are
trained separately. The global stage trains for 400K itera-
tions with a [ loss ||V0 — V0| ; the local stage trains for
150K iterations with a I3 loss combined across mesh hierar-
chy levels with equal weights, Zé:o HV;€ — Vk‘ 3 where
V. is the ground truth base mesh vertices for the predicted
V; atlevel k. We train the progressive mesh generation net-
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Figure 5: Qualitative comparison on geometric accuracy with the existing methods. The scan-to-mesh distance is visualized
in heatmap (red means > 5 mm). Note that 3DMM and DFNRMVS [4] need rigid ICP as post-processing. Our outputs
require no post-processing, while outperforming the existing learning-based method in geometry accuracy.

work using Adam optimizer with a learning rate of 1le — 4
and batch size of 2 on a single NVIDIA V100 GPU. For the
detail maps synthesis, we adopt the synthesis network from
[61] and the super-resolution network from ESRGAN [62].
For more details, see the Sup. Mat.

4.1. Results

Baselines. We evaluate the performance of our base mesh
prediction and compare to the following existing methods:
(1) Traditional MVS and Registration: we run commer-
cial photogrammetry software AliceVision [2], followed by
non-rigid ICP surface registration. (2) 3DMM Regression:
we adopt a network architecture similar to [54, 55, 63] for
a multi-view setting. (3) DFNRMYVS: [4]: a method that
learns an adaptive model space and on-the-fly iterative re-
finements on top of 3DMM regression.

We argue that the two-step methods of MVS and reg-
istration is susceptible to MVS errors and requires man-
ual tweaking optimization parameters for different inputs,
which makes it not robust. Our method shows robustness
and generalizability for challenging cases, outperforms ex-
isting learning-based method and achieves the state-of-the-
art geometry and correspondence quality. Our method has
efficient run-time. We show various ablation studies to val-
idate the effectiveness of our design. We will provide more
comparison and results in the Sup. Mat.

Robustness. Fig. 6 show the results from various methods
given challenging inputs. Note that when the nose of the
subject (top case) is specular reflective (due to oily skin)
or has facial hair, the traditional MVS fails to reconstruct
the true surface, producing artifacts that affect the subse-
quent surface registration step. With conservative optimiza-
tion parameters (e.g. strong reliance on 3DMM), the re-
sult is more robust. However with the same parameters, it
affects the flexibility for fitting detailed shape and motion

MVS scan
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Input images Conservative Aggressive

(2 of 15) Traditional MVS + registration DFNRMVS [4] Ours

MVS scan

Output mesh

Conservative Aggressive
(2 of 15) Traditional MVS + registration
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Figure 6: Evaluation on method robustness.

for other input cases (e.g. bottom case). Furthermore, the
extreme and asymmetrical motion is challenging for fitting
only within the morphable model. This case requires “ag-
gressive” fitting, in which less regularizations are applied.
Therefore we point out this dilemma of general parameters
in the traditional MVS and registration affects of automa-
tion and requires much manual work for high-quality re-
sults. The learning based method DFNRMVS [4] shows
potential for robustness and generalizability. However, they
cannot output meshes in accurate shape and expressions.
On the contrary, our model shows superior performances in
predicting a reliable mesh, given such challenging inputs.
Note that the details, such as closed eyelids and asymmetri-
cal mouth motion are faithfully captured.
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Geometric Accuracy. Fig. 5 shows the inferred meshes
given images from 15 views, along with error visualizations
with the reference scans. The 3DMM regression method
cannot fit extreme or subtle expressions (wide mouth open,
concave cheek and eye shut). The adaptive space and the
online refinement improve DFNRMVS [4] for a better fit-
ting, but it still lacks the accuracy to cover the geometric
details. Our method is capable of predicting base meshes
that closely fit the ground truth surfaces. The results recover
identities for the subjects and captures challenging expres-
sions such as extreme mouth opening or subtle non-linearity
of small muscles movement (concave cheek) which cannot
be modeled by linear 3DMMs. The overlay and error vi-
sualizations indicate that our reconstruction fits the ground
truth scan closely with fitting errors significantly below 5
millimeters. Due to not being able to utilize true projec-
tion parameters, the results of 3DMM regression and DFN-
RMVS [4] lack accuracy in absolute coordinate and need a
Procrustes analysis (scale and rigid pose) as post-processing
for further fitting to the target. In contrast, our method out-
performs these methods without post-processing.

As a quantitative evaluation, we measure the distribution
of scan-to-mesh distances. 78.3% of vertices by our meth-
ods have scan-to-mesh distance lower than 1 mm. This re-
sult outperforms the 3DMM regression which have 27.0%
and 33.1% (without and with post-processing). The median
scan-to-mesh distance for our results is 0.584 mm, achiev-
ing sub-millimeter performance. We show cumulative scan-
to-mesh distance curves in the Sup. Mat.

Correspondence Accuracy. We provide quantitative
measure for correspondence accuracy for generated base
meshes, by comparing them to the ground truth aligned
meshes (artist-generated in the same topology), and com-
pute the vertex-to-vertex (v2v) distances on a test set. The
3DMM regression method achieves a median v2v distance
of 3.66 mm / 2.88 mm (w/o and w/ post-processing).
Our method achieves 1.97 mm outperforming the exist-
ing method. The v2v distances are also visualized on the
ground truth mesh in Fig. 7. We additionally evaluate our
aligned meshes by the median errors to the ground truth
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Figure 8: Qualitative evaluation on correspondence com-
pared to optical flow.

Methods ‘ Time ‘ Automatic
Traditional pipeline 600+ X
DFNRMVS [4] 45 v
ToFu (base mesh) 0.385 v

Table 1: Comparison on run time on base mesh, given im-
ages from 15 views and measured in seconds.

3D landmarks. Our method achieves 2.02 mm, while the
3DMM regression method achieves 3.92 mm / 3.21 mm
(w/o and w/ post-processing). We provide more quantita-
tive evaluations in the Sup. Mat.

We compute the photometric errors between the texture
map of the output meshes and the one of the ground truth
meshes. Lower photometric errors indicate the UV textures
match the pre-designed UV parametrization (i.e. better cor-
respondence). Our method has significantly lower errors,
especially in the eyebrow region, around the jaw and for
wrinkles around eyes and nose. Note that the 3DMM re-
gression method without post-processing performs worse,
while our method requires no post-processing.

In Fig. 8, we further evaluate the correspondence quality
by projecting it onto 2D images and warping the reference
image (extreme expression) back to target image (neutral
expression). The ideal warping outputs would be as close
to the target image as possible, except for shades as in wrin-
kles. We compare the performance with traditional pipeline
of MVS and registration (with manual adjustment) and the
traditional optical flow method. Our method recovers better
2D correspondence than optical flow, which relies on local
matching which tends to fail when occlusion and large mo-
tion, as shown in Fig. 8 (see lip regions). Further optical
flow takes 30 seconds on image resolution 1366 x 1003,
compared within 1 second based on our base meshes. The
traditional method achieves good results, but at a cost of 3
orders of magnitude longer of processing time and possibly
manual adjustment.

Inference Speed. The traditional pipeline takes more than
10 minutes and potentially more time for manual adjust-
ments. DFNRMVS [4] infers faces without tuning at test-
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Figure 9: Based on our reliable base meshes, our appear-
ance and detail capture network predicts realistic face skin
details and attributes, without special hardware such as
Light Stage at test-time, enabling photo-realistic rendering.
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time but is still slower at 4.5 seconds due to its online op-
timization step and heavy computation on the dense pho-
tometric term. Our global and local stage takes 0.081 sec-
onds and 0.304 seconds respectively. As shown in Table 1,
our method produces a high-quality registered base mesh in
0.385 seconds, and achieves sub-second performance, while
being fully automatic without manual tweaking.
Appearance Capture. In Fig. 1 and Fig. 9, we show ren-
dering results with the inferred displacement and albedo and
specular maps, enabling photo-realistic renderings.
Ablation Studies. In Fig. 10 (left), we evaluate the robust-
ness of our network on various numbers of input views. The
resulting quality degrades gracefully as the views decrease.
Our method produces reasonable results on views as sparse
as 4, which is extremely difficult for standard MVS due to
large baseline and little overlaps. Fig. 10 (right) demon-
strates the normal displacement in the upsampling function
contributes in capturing fine shape details. We provide more
ablation studies in the Sup. Mat.

Generalization to New Capture Setups. We finetune our
network on the CoMA [44] dataset, which contains a differ-
ent camera setup, significantly fewer views (4) and subjects
(12), different lighting conditions and special make-up pat-

terns painted on subjects’ faces. The results in Fig. 11 show
that our system can in principle be applied to the different
capture setups. However, we observe some artifacts around
jaws and slightly protruding eyebrow bones. This is po-
tentially due to limited number of subjects and insufficient
camera coverage (e.g. the 3rd image misses the jaw region).

5. Conclusion

We introduced a 3D face inference approach from multi-
view input images that can produce high-fidelity 3D faces
meshes with consistent topology using a volumetric sam-
pling approach. We have shown that, given multi-view in-
puts, implicitly learning a shape variation and deformation
field can produce superior results, compared to methods that
use an underlying 3DMM even if they refine the resulting
inference with an optimization step. We have demonstrated
sub-millimeter surface reconstruction accuracy, and state-
of-the-art correspondence performance while achieving up
to 3 orders of magnitude of speed improvement over con-
ventional techniques. Most importantly, our approach is
fully automated and eliminates the need for data clean up af-
ter MVS, or any parameter tweaking for conventional non-
rigid registration techniques. Our experiments also show
that the volumetric feature sampling can aggregate effec-
tively features across views at various scales and can also
provide salient information for predicting accurate align-
ment without the need for any manual post-processing. Our
next step is to extend our approach to regions beyond the
skin region, including teeth, tongue, and eyes. We believe
that our volumetric digitization framework can handle non-
parametric facial surfaces, which could potentially elimi-
nate the need for specialized shaders and models in con-
ventional graphics pipelines. Furthermore, we would like
to explore video sequences, and investigate ways to ensure
temporal coherency in fine-scale surface deformations. Our
model is suitable for articulated non-rigid objects such as
human bodies, which motivates us to look into more gen-
eral shapes and objects such as clothing and hair.
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