

Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning

of the triangles.

Aggregate Functions

Overview

lighting, etc.

- For image-based 3D reasoning tasks, supervised methods rely on a large amount of labelled 3D data that are hard to acquire.
- ► We propose SoftRas, a truly differentiable mesh renderer, which enables 3D unsupervised learning of 3D properties, including geometry, texture, pose, etc., only from 2D images.
- SoftRas can 1) directly render color mesh using differentiable functions and 2) flow gradients from pixels to all mesh vertices, including those occluded and far-range ones.

Rendering Pipeline

- We compare standard rendering pipeline (upper branch) and our rendering framework (lower branch).
- Standard graphics rendering: rasterization and z-buffering are not differentiable due to the discrete sampling operations.
- Ours: we propose probability maps and aggregate functions as their differentiable substitutes.

Probability Maps

Computer Science Department - University of Southern California

Shichen Liu^{1,2}, Tianye Li^{1,2}, Weikai Chen¹, and Hao Li^{1,2,3} ¹USC Institute for Creative Technologies ²University of Southern California ³Pinscreen

2D image

Image

$w_j^i = rac{\mathcal{D}_j^i \exp(z_j^i/\gamma)}{\sum_k \mathcal{D}_k^i \exp(z_k^i/\gamma) + \exp(\epsilon/\gamma)}$	(3)
This formulation leads to reasonable gradients:	
$\begin{cases} \frac{\partial I^{i}}{\partial \mathcal{D}_{j}^{i}} = \sum_{k} \frac{\partial I^{i}}{\partial w_{k}^{i}} \frac{\partial w_{k}^{i}}{\partial \mathcal{D}_{j}^{i}} + \frac{\partial I^{i}}{w_{b}^{i}} \frac{\partial w_{b}^{i}}{\partial \mathcal{D}_{j}^{i}} = \frac{w_{j}^{i}}{\mathcal{D}_{j}^{i}} (C_{j}^{i} - I^{i}) \\ \frac{\partial I^{i}}{\partial z_{i}^{i}} = \sum_{k} \frac{\partial I^{i}}{\partial w_{k}^{i}} \frac{\partial w_{k}^{i}}{\partial z_{i}^{i}} + \frac{\partial I^{i}}{w_{b}^{i}} \frac{\partial w_{b}^{i}}{\partial z_{i}^{i}} = \frac{w_{j}^{i}}{\gamma} (C_{j}^{i} - I^{i}) \end{cases}$	(4)

i s	$=\mathcal{A}_{\mathcal{O}}(\{\mathcal{D}_{j}\})=1$ -	-I

Comparison to Previous Methods

Experimental Results (3D IoU on ShapeNet)

• •								
pixel as	Category	Airplane	Bench	Dresser	Car	Chair	Display	Lamp
	retrieval	0.5564	0.4875	0.5713	0.6519	0.3512	0.3958	0.2905
(1)	voxe	0.5556	0.4924	0.6823	0.7123	0.4494	0.5395	0.4223
(-)	NMR	0.6172	0.4998	0.7143	0.7095	0.4990	0.5831	0.4126
	Ours (sil.)	0.6419	0.5080	0.7116	0.7697	0.5270	0.6156	0.4628
	Ours (full)	0.6670	0.5429	0.7382	0.7876	0.5470	0.6298	0.4580
	Category	Speaker	Rifle	Sofa	Table	Phone	Vessel	Mean
	retrieval	0.4600	0.5133	0.5314	0.3097	0.6696	0.4078	0.4766
	voxe	0.5868	0.5987	0.6221	0.4938	0.7504	0.5507	0.5736
	NMR	0.6536	0.6322	0.6735	0.4829	0.7777	0.5645	0.6015
	Ours (sil.)	0.6654	0.6811	0.6878	0.4487	0.7895	0.5953	0.6234
$\sigma = 0.03$	Ours (full)	0.6807	0.6702	0.7220	0.5325	0.8127	0.6145	0.6464

ICT Vision & Graphics Lab

► We compute soft color in a softmax mannar:

$$I^{i} = \mathcal{A}_{S}(\lbrace C_{j}\rbrace) = \sum w_{j}^{i}C_{j}^{i} + w_{b}^{i}C_{b}, \qquad (2)$$

where w_i^i is weighted by the relative depth and distance to pixel P_i

$$\mathbf{I}(1-\mathcal{D}_j^i) \tag{5}$$

Mail: liushichen95@gmail.com

Our code on PyTorch is released at: https://github.com/ShichenLiu/SoftRas

http://vgl.ict.usc.edu