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Background

Goal: 3D video synthesis

Capture dynamic scenes

® Non-trivial to extend NeRF to dynamic case
® Non-rigid motion, volumetric and topology changes

Long training time

® NeRF: 50 GPU hours, 10 sec, 30fps = 15,000 GPUS hours
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The datasets cover challenging dynamic objects and view-dependent effects in a natural daily indoor environment

We release the datasets for research purposes at our project page
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Multi-camera rig An example of the training views (right) and test view (left)

Results
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DyNeRF: Dynamic Neural Radiance Field

High-dim. latent codes to
capture scene motion and
dynamic appearances
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DyNeRF . . .
Space-time continuity:

synthesis from arbitrary views
and time

Efficient Training Strategies

Hierarchical training
® First train on keyframes

Appearance
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Ray importance sampling

e Explore spatial-temporal
redundancy

® Emphasize on highly time-
variant rays (pixels)

(b) Importance weights
for the keyframes

(c) Importance weights
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®* Then optimize for full sequences.

RESEARCH

* equal contributions

Results (cont.)
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https://neural-3d-video.github.io/
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various dynamic real-
world scenes.

i}
i
i
i
i
i
i
i
i
4

Our method synthesizes
high-quality 3D videos for

Method PSNRT MSE] DSSIM| LPIPS| FLIP|
MVS 19.1213 0.01226 0.1116 0.2599  0.2542
NeuralVolumes 22.7975 0.00525 0.0618 0.2951 0.2049
LLFF 23.2388 0.00475 0.0762 0.2346  0.1867
NeRF-T 28.4487 0.00144 0.0228 0.1000  0.1415
DyNeRFT 28.4994 0.00143 0.0231 0.0985  0.1455
DyNeRF 29.5808 0.00110 0.0197 0.0832  0.1347

By distilling the pre-trained DyNeRF model into layers
meshes, we can render interactive 3D videos on a Quest 2

Our method outperforms existing methods and baseline
methods in all visual quality metrics.

VR headset.

Limitation and Future Work

DyNeRF-ISG  DyNeRF-nolS

Challenge: outdoor scenes

® changing illuminations
between cameras

® larger scene volume with
complex geometries

DyNeRF-IST

Our 3D video results on the Broxton et al.
datasets with a different capture setting. Please
note that our representation is compact (28MB
for 150 frames).
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(left) The efficient training strategies accelerate training

: . : Our method achieves the best visual quality compared to the existing methods.
| and improves visual quality.




