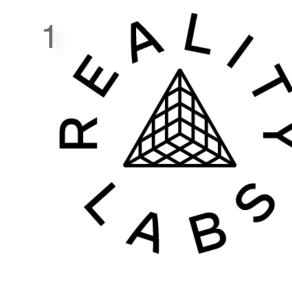


Neural 3D Video Synthesis from Multi-view Video

Tianye Li^{1,3,*} Mira Slavcheva^{1,*} Michael Zollhoefer¹ Simon Green¹ Christoph Lassner¹ Changil Kim² Tanner Schmidt¹ Steven Lovegrove¹ Michael Goesele¹ Richard Newcombe¹ Zhaoyang Lv¹



RESEARCH * equal contributions

More Info

Background

Goal: 3D video synthesis

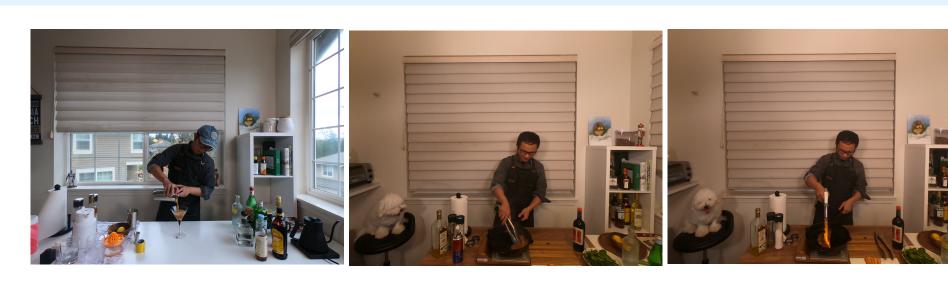
Capture dynamic scenes

- Non-trivial to extend NeRF to dynamic case
- Non-rigid motion, volumetric and topology changes

Long training time

• NeRF: 50 GPU hours, 10 sec, 30fps = 15,000 GPUS hours

Data

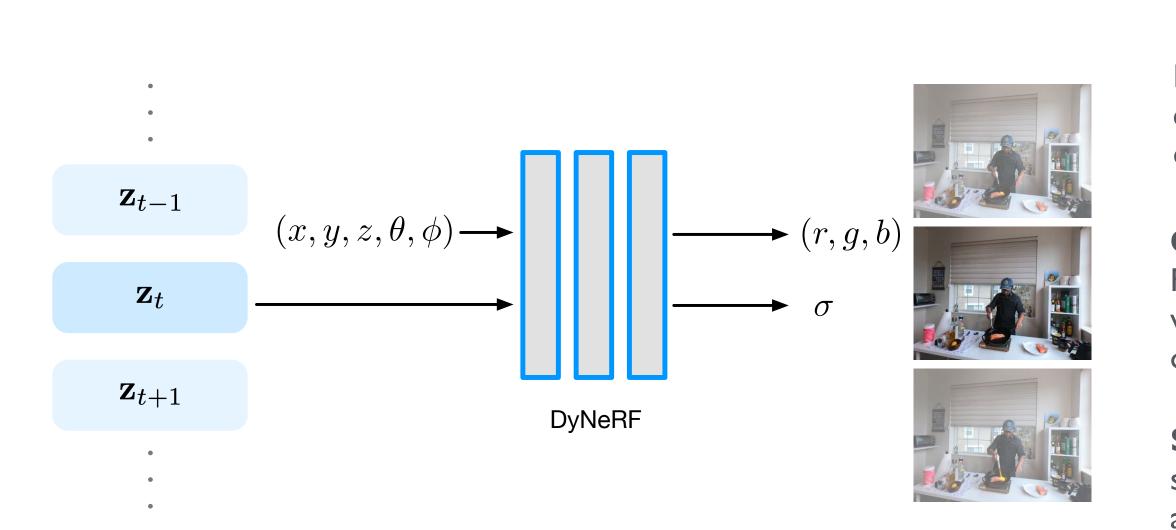


We release the datasets for research purposes at our project page

Multi-camera rig

An example of the training views (right) and test view (left)

DyNeRF: Dynamic Neural Radiance Field

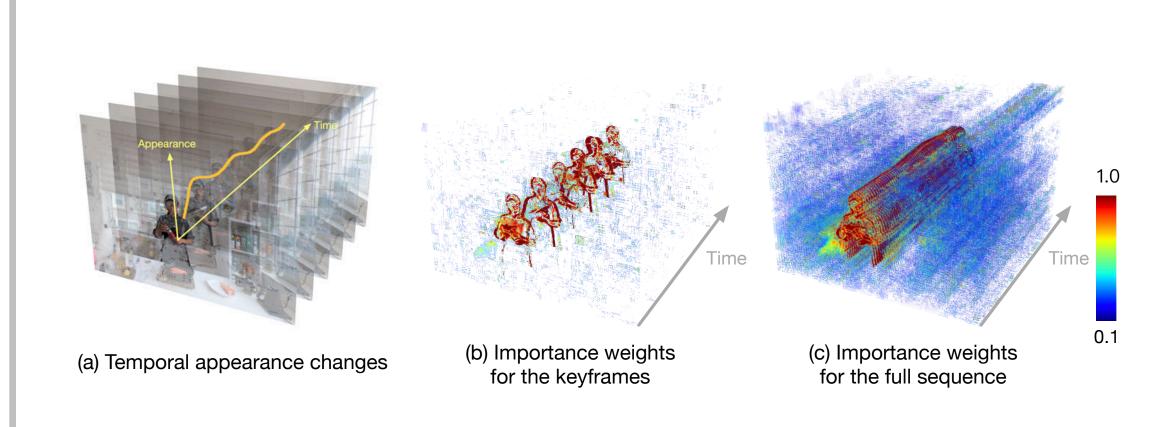


High-dim. latent codes to capture scene motion and dynamic appearances

Compactness: 10 seconds 30 FPS 2.7K resolution, 18-view videos can be compressed to only 28 MB

Space-time continuity: synthesis from arbitrary views

Efficient Training Strategies



$$\mathcal{L}_{\text{efficient}} = \sum_{t \in \mathcal{S}, \mathbf{r} \in \mathcal{I}} \sum_{j \in \{c, f\}} \left\| \hat{\mathbf{C}}_{j}^{(t)}(\mathbf{r}) - \mathbf{C}^{(t)}(\mathbf{r}) \right\|_{2}^{2}$$

Hierarchical training

- First train on keyframes
- Then optimize for full sequences.

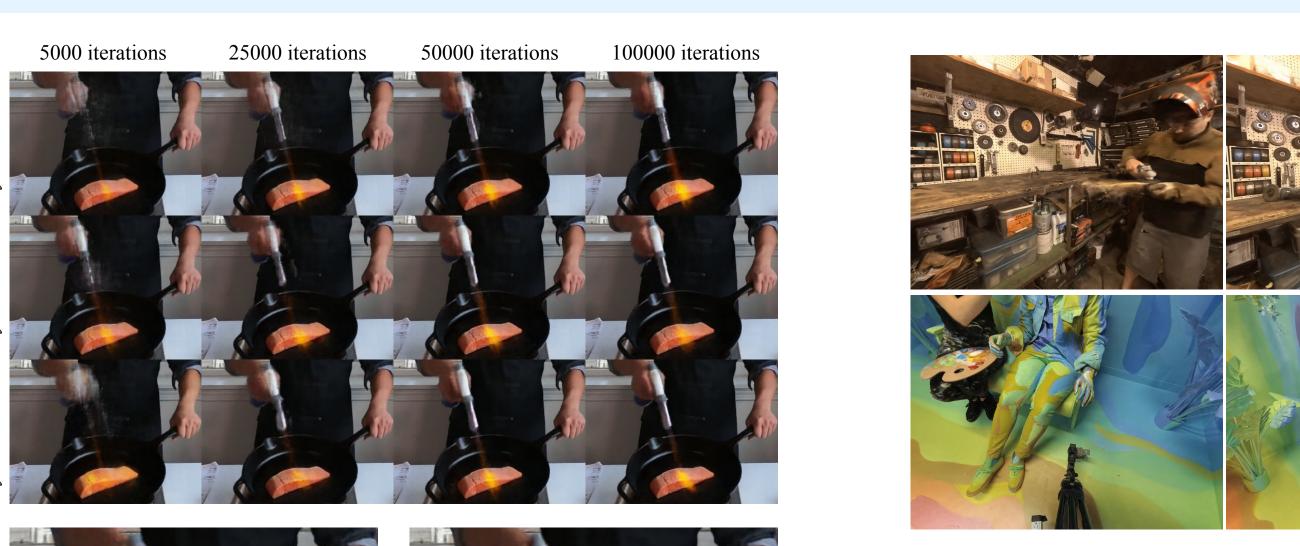
Ray importance sampling

- Explore spatial-temporal redundancy
- Emphasize on highly timevariant rays (pixels)

Time (frame) selection Space (ray) selection

Stage (coarse, fine) as in NeRF

Results

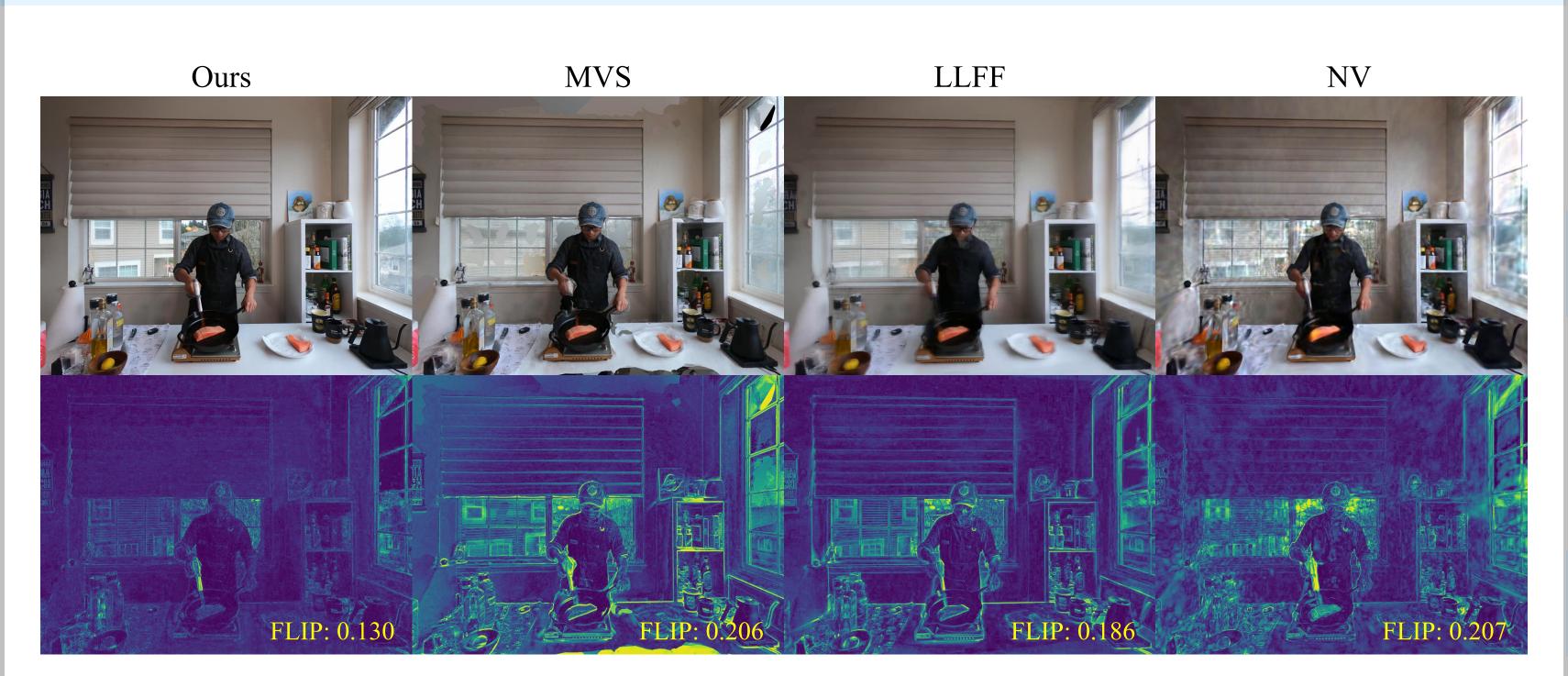


Our 3D video results on the Broxton et al.

datasets with a different capture setting. Please note that our representation is compact (28MB for 150 frames).

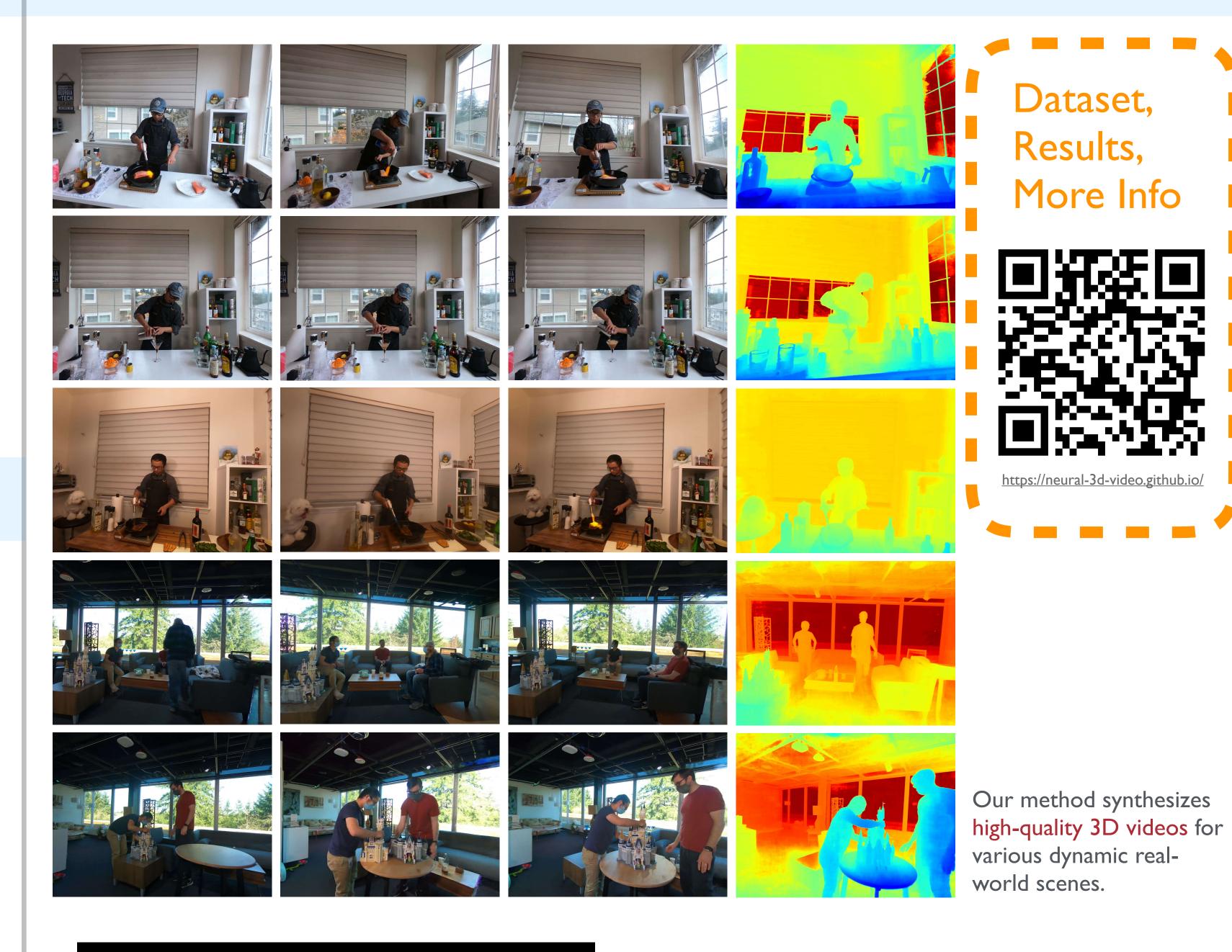
(left) The efficient training strategies accelerate training and improves visual quality.

Results (cont.)



Our method achieves the best visual quality compared to the existing methods.

Results (cont.)

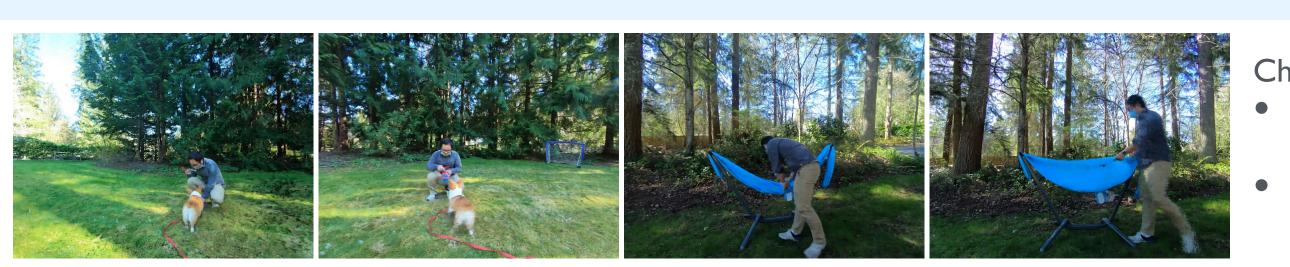


 $DSSIM \downarrow LPIPS \downarrow FLIP \downarrow$

By distilling the pre-trained DyNeRF model into layers meshes, we can render interactive 3D videos on a Quest 2 VR headset.

Our method outperforms existing methods and baseline methods in all visual quality metrics.

Limitation and Future Work



- Challenge: outdoor scenes changing illuminations between cameras
- larger scene volume with complex geometries

References

- Mildenhall et al., NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020
- Mildenhall et al., Local light field fusion: Practical view synthesis with prescriptive sampling guidelines, SIGGRAPH 2019 • Lombardi et al., Neural volumes: learning dynamic renderable volumes from images, SIGGRAPH 2019
- Broxton et al., Immersive light field video with a layered mesh representation, SIGGRAPH 2020